E=0B=0×E=Bt×B=Et \begin{align*} \nabla \cdot \mathbf{E} &= 0 \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \frac{\partial \mathbf{E}}{\partial t} \end{align*}

Modeling Linear PDE Systems with Probabilistic Machine Learning

Markus Lange-Hegermann
Institut für industrielle Informationstechnik - inIT
Department of Electrical Engineering and Computer Science, TH OWL

Bogdan Raiță
Department of Mathematics and Statistics
Georgetown University

With many, many contributions by Andreas Besginow, Marc Härkönen, Jianlei Huang, Xin Li, and Daniel Robertz

1
\[ \begin{align*} \nabla \cdot \mathbf{E} &= 0 \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \frac{\partial \mathbf{E}}{\partial t} \end{align*} \] Modeling Linear PDE Systems with Probabilistic Machine Learning Markus Lange-Hegermann Institut für industrielle Informationstechnik - inIT Department of Electrical Engineering and Computer Science, TH OWL Bogdan Raiță Department of Mathematics and Statistics Georgetown University With many, many contributions by Andreas Besginow, Marc Härkönen, Jianlei Huang, Xin Li, and Daniel Robertz